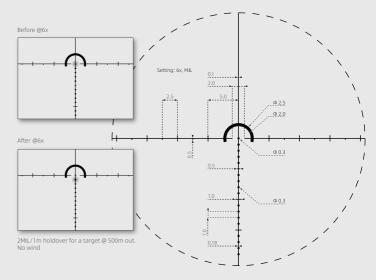
VIS-F1 MIL SFP RETICLE


COMPENSATION BULLET DROP

The VIS-F1 MIL reticle is a versatile design for fast aiming at close to medium ranges. The 0.3 MIL dot is the focal point for fast aiming, 00000 enabling rapid alignment with the target in low-light or high-stress 00000 scenarios. The 2.5 MIL diameter semi-circular feature aids in centering 00000 the target for quick engagement at close to medium ranges. 00000 The horizontal line extends 25 MIL on each side, with 5 MIL intervals between marks. The vertical line extends 20 MIL below the center point, with each gap measuring 1 MIL. The clear 0.3 MIL diameter dots help shooters make precise windage and elevation adjustments. For VIS-F1 reticle, the subtension is valid at 6x. Applicable products: VIS6 - 1-6x24i Red indicated illuminated

portion of the reticle

Holdover refers to the technique of adjusting the aim of a firearm to compensate for the effect of gravity on the bullet's trajectory. Bullet drop is the decrease in bullet height as it travels through the air. The shooter can use the MIL markings on the reticle to calculate the bullet drop. The MIL markings on the vertical axis represent the distance in MILs between each hash mark. The horizontal axis represents the windage adjustment.

For example, under no wind condition, after zeroing your scope at 100m, if you know your target is at 500m and your ammo has a 1m bullet drop at that distance, you will need to use 2MIL holdover point. Here is how you get the 2MIL: since 1MIL equals 10cm at 100m, 50cm at 500m, and then 2MIL equals 2 x 50cm =1m at 500m, you need to hold the 2MIL drop point to compensate for the 1m bullet drop, thus bring the aim point to line up with the bullet's point of impact.

When it comes to wind correction in shooting, there are three key factors to keep in mind: the flying time of the bullet, the velocity and direction of the wind, and the ballistics coefficient (BC) of the bullet. By taking into account these three factors, a shooter can make the necessary adjustments to account for wind drift and achieve accurate shots even in challenging conditions.

HOW TO MEASURE TARGET HEIGHT

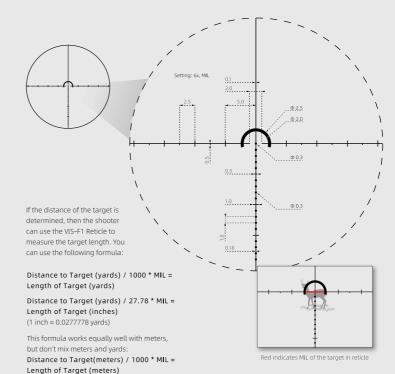
Setting: 6x, MIL Ф 2.0 Ф 0.3 To use the VIS-F1 Reticle for ranging, the shooter first 0.5 needs to know the height of the target in question. Once the height of the target is determined, the shooter can use the VIS-F1 Reticle to measure the target in MIL. Height of Target (yards) / MIL * 1000 = Distance to Target (yards) If the height of target is in Inches, then the formula should be: Height of Target (inches) / MIL * 27.78 = (1 inch ≈ 0.0277778 yards)

Distance to Target (yards)

This formula works equally well with meters, but don't mix meters and yards:

Height of Target (meters) / MIL * 1000 = Distance to Target (meters)

Measure the object in yards to find the distance in yards, and use meters to yield distances in meters. If the height of an adult male is 5.91ft, and measures 5MIL across the reticle, that is:


Red indicates the height of the target

Distance to Target (yards) / 27.78 * MIL = Height of Target (inches)

5.91ft = 70.9 inches

70.9 (inches) / 5 mil x 27.78 = 394 (yards) 2.0 (yards) / 5 MIL x 1000 = 394 (yards) 1.8 (meters) / 5 MIL x 1000 = 360 (meters)

HOW TO MEASURE TARGET LENGTH

Measure the object in yards to find the distance in

yards, and use meters to yield distances in meters.

If the Distance to Target is 400m, and the target measures 4.5MIL across the reticle, then the target length is:

400 (meters) / 1000 * 4.5 MIL = 1.8 (meters) 437 (yards) / 1000 * 4.5 MIL = 2.0 (yards) 437 (yards) / 27.78 * 4.5 MIL = 70 (inches)